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B INTRODUCTION

In recent years, structure—activity relationships (SARs) have
increasingly been studied through mining of large compound
data sets, leading to a renaissance of the activity landscape
concept.' ™ In general terms, an activity landscape is defined
as any graphical representation that integrates similarity and
potency relationships between compounds sharing a specific
activity.” From activity landscape representations of different
design, both global and local SAR features present in com-
pound data sets can be extracted.”® Large-scale SAR analysis
complements classical quantitative structure—activity relation-
ship (QSAR) modeling’ For example, activity landscape
models make it possible to delineate regions of SAR continuity
where gradual changes in compound structure lead to moderate
changes in compound potency. The presence of SAR continuity
provides a fundamental basis for QSAR analysis and resulting
compound activity predictions.® Furthermore, activity land-
scapes also reveal regions of SAR discontinuity where small
changes in chemical structure lead to large changes in compound
potency, a scenario often encountered in lead optimization.
However, the presence of SAR discontinuity falls outside the
applicability domain of the QSAR paradigm,7 However, regions
of SAR discontinuity in activity landscapes are generally
thought to provide much SAR information™® because small
structural changes of active compounds lead to large potency
effects. The most prominent form of SAR discontinuity is
provided by activity cliffs>”® that have been discussed in the
medicinal chemistry relevant scientific literature since the early
1990s.” In general, an activity cliff is defined as a pair of struc-
turally similar or analogous compounds having a large dif-
ference in potency.”” As an extreme form of SAR discontinuity,
activity cliffs represent the most prominent features of activity
landscapes and are often the primary focal point of their
analysis.

Modeling and rationalizing activity landscapes require the
application of computational methods. As such, the activity
landscape concept is of comparable relevance for chemoinfor-
matics (having a strong focus on data mining and represen-
tation) and medicinal chemistry (given its immediate relevance
for SAR analysis).

In a previous article,> different approaches to activity land-
scape design and analysis have been discussed in detail. This
contribution provides a follow-up on this activity landscape
perspective by specifically concentrating on the study of activity
cliffs. We currently observe a trend to increasingly discuss
activity cliffs in the computational and medicinal chemistry
literature. There are probably several reasons for this. Without
doubt, the activity cliff concept is intuitive from a medicinal
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chemistry point of view and therefore attractive to consider.
Furthermore, the analysis of activity cliffs in compound data
sets is also of interest for computational research, as it requires
systematic compound similarity and potency comparisons.
However, if one wanted to be a bit provocative, one could
perhaps also argue that the term activity cliff has become a
trendy buzz word in the SAR field that is often used without
thinking too much about its scientific relevance. There are
certainly a number of still open questions that should be
addressed. For example, how can one describe activity cliffs in a
formally consistent manner? What exactly makes cliffs
interesting for medicinal chemistry? Are there general charac-
teristics of activity cliffs or should one better consider them on
an individual basis? As will be argued herein, the exploration of
activity cliffs is a more complex task than often thought and
requires exact definitions to be made. Moreover, the activity cliff
concept is associated with substantial caveats, both from a theo-
retical and experimental point of view. Finally, whether or not
activity cliff analysis provides information that is of immediate use
for medicinal chemistry is often a matter of debate.

Herein, we describe in detail the multifaceted nature of
activity cliffs, discuss underlying scientific concepts, and explain
how their individual or systematic analysis might (or might not)
provide useful information for medicinal chemistry programs.

B ACTIVITY CLIFF DEFINITION

We begin the discussion by reiterating a generally accepted
definition: activity cliffs are formed by pairs of structurally
“similar” compounds with “large” differences in potency.
Importantly, this definition highlights two aspects that sub-
stantially complicate the consistent assessment of activity cliffs
in computational and medicinal chemistry. First, what does
“similar” mean in this context? How do we assess structural
similarity and when do we consider compounds to be similar?
This criterion presents a major conundrum for activity cliff
analysis (vide infra). Second, what are “large” potency differ-
ences, 10-fold, 100-fold, or more? Is a potential cliff formed
between two compounds with 1 and 100 M potency com-
parable to one formed by compounds having 1 and 100 nM
potency? Should one only consider highly potent compounds
as potential cliff partners? These are other relevant questions
that are often not considered in the analysis of activity cliffs. For
the exploration of activity cliffs, it is essential to clearly define
these criteria and take potential ambiguities into account, as
further discussed in the following.
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Figure 1. Activity cliff representations. Three alternative activity cliff representations are shown for a given compound pair A (weakly potent) and B
(highly lpotent). These representations include a network-like similarity graph'® (NSG, left), a 3D activity landscape model'> (middle), and a SALI
1

graphs

(right). In NSGs, nodes represent compounds and edges pairwise similarity relationships. In SALI graphs, nodes are also compounds and

edges indicate activity cliffs of varying magnitude. The 3D landscape model results from a 2D projection of chemical reference space with an
interpolated potency surface added as the third dimension. Here, compounds are not explicitly shown (their positions are defined in the underlying
2D projection). NSGs and 3D landscapes are colored by potency using a spectrum from green (low potency) to red (high). In NSGs, nodes are
scaled in size according to the contribution of each compound to local SAR discontinuity (quantified via the discontinuity score'®). A compound
makes a large contribution to local SAR discontinuity if its potency significantly differs from the potency of its immediate structural neighbors.
Hence, in NSGs, combinations of large red and green nodes indicate activity cliffs.

B IDENTIFICATION OF ACTIVITY CLIFFS

Activity cliffs are the most prominent features of activity land-
scape representations. However, given the previous detailed
review of activity landscape representations, only one aspect of
activity landscape modeling (focusing on activity cliffs) will be
discussed here, i.e., how to best identify activity cliffs in large
compound data sets. For this purpose, we adhere to the general
definition of activity cliffs (vide supra). Following a conven-
tional approach, compounds forming activity cliffs might, for
example, be selected by inspection of standard R-group tables,
although this is only possible for individual analogue series.
Even for individual series this is quickly becoming an arduous
task when they substantially grow in size. More comprehensive
graphical access to the identification of activity cliffs in large
and structurally heterogeneous compound data sets is provided
by 2D or 3D activity landscape representations that emphasize
compounds with high structural similarity and significantly
different potency. This is illustrated in Figure 1 for alternative
activity cliff representations.'®™'> From graph representations
shown in this figure, activity cliffs can be readily selected on the
basis of visual inspection.

A systematic account of activity cliffs beyond visual analysis is
facilitated through the use of numerical SAR analysis functions
that quantify similarity and potency relationships in a consistent
manner.”? Such functions have been introduced to analyze
large compound data sets and globally characterize SAR conti-
nuity and discontinuity. Global SAR analysis functions include
the structural similarity vs activity similarity formalism upon
which the design of structure—activity similarity (SAS) maps
is based® as well as the SAR index (SARI),"* which yields a
composite score of individual SAR continuity and discontinuity
scoring functions. However, for the identification of activity
cliffs, local scoring schemes focusing on SAR discontinuity are
more relevant than global assessments. Such local SAR analysis
functions include the compound discontinuity score,
of the SARI formalism, which quantifies the individual con-
tribution of compounds to local SAR discontinuity, and the
structure—activity landscape index (SALI)."' Both global and
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local SAR analysis functions are based on systematic pairwise
compound comparisons.
The local discontinuity score is defined as

Z{jlsim(i,j)>o.65,i;&j} potdiff(i,j) X sim(i;)
I{jlsim(i,j) > 0.65,i # j}| (1)

Here, “potdiff” stands for potency difference and “sim” for com-
pound similarity. It is standardized with respect to all com-
pounds within a set and normalized to the value range [0, 1].1°
According to this formalism, compounds obtain high dis-
continuity scores if their potency significantly differs from the
potency of their immediate structural neighbors. Hence, pairs
of structurally similar compounds with significantly different
potency values obtain compound scores close to 1 and mark
activity cliffs.

The SALI scoring scheme'" is specifically designed to quan-
tify activity cliffs:

disc(i) =

SALI(ij) = —J

) = i) ®)
In the SALI formula, “P” means potency and “sim” similarity.
SALI also is a local pairwise score, but it is not normalized and
has an infinite value range. It is applied to generate activity cliff-
centric representations of activity landscapes. In SALI graph
representations, nodes represent compounds and edges activity
cliffs. Edges are depicted as arrows that are directed toward the
more potent compound. Thus, two compounds are connected
if their SALI score exceeds a given threshold value, for example,
a score greater than 70% or 80% of all scores. This makes it
possible to identify activity cliffs of increasing magnitude. The
SALI graph represents series of pairwise connected activity
cliffs.'! By application of varying score threshold levels, a
continuum of activity cliffs is monitored for a given compound
data set.

B DESCRIPTION OF ACTIVITY CLIFFS

Inherent in the general definition of activity cliffs are potential
ambiguities associated with the assessment of molecular
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Figure 2. Exemplary activity cliffs. Two activity cliffs are shown where structural relationships between cliff partners notably differ. The activity cliff on
the left is formed by two antagonists of vascular endothelial growth factor receptor-2. These two analogues are only distinguished by a minute chemical
change (red), and the activity character of this similarity—potency relationship is undisputable. On the right, a pair of cyclooxygenase-1 inhibitors is
shown that form another potential cliff. However, in this case, a central ring system is replaced (red), effectively producing two chemically distinct
scaffolds. Thus, although these two inhibitors yield a MACCS Tanimoto similarity of 91%, the activity cliff character might be debatable in this case.

similarity and potency differences (vide supra). Currently, no
generally accepted criteria for activity cliffs are available.
Although the description of cliffs requires a quantitative readout, it
is rather common to refer to activity cliffs in a qualitative
manner. However, to describe activity cliffs consistently and
render different analyses comparable, clear definitions of cliff
parameters are required.

Continuous vs Discrete. The design of the SALI forma-
lism points at an important distinction: should a continuous
spectrum of activity cliffs be considered or only discrete (large-
magnitude) cliffs? There is no general answer to this question;
it depends on the application. An obvious advantage of con-
sidering a continuum of activity cliffs is that compound data
sets of different composition can be scanned for interesting
cliffs. This is helpful, for example, when searching bioassay data
for activity cliffs of increasing magnitude.'* On the other hand,
a disadvantage of the continuum approach is that cliffs detected
at a certain score threshold level might essentially be irrelevant
(pseudo-cliffs) because they are only of small and chemically
insignificant magnitude (potency difference). Furthermore,
through scoring, the magnitude of cliffs is not determined;
they are only compared on a relative scale. Regardless of whether
a continuum of activity cliffs is considered or discrete states, it is
important to note that numerical local SAR analysis functions
will ultimately reveal the most significant activity cliffs that are
present in a given compound data set, which is a major advantage
of these approaches. However, identifying the most prominent
cliffts through local SAR scoring is often not sufficient. For
example, to determine activity cliff distributions via large-scale
compound data mining and compare cliffs across different com-
pound series or data sets, discrete definitions of activity cliffs are
required. These definitions must include the applied similarity
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criterion, the potency measure and potency difference between
cliff partners, and the potency range (interval) that is con-
sidered relevant for cliff formation. Concerning the potency
criteria, for a number of analyses carried out in our laboratory it
has been proven useful to consider activity cliffs only if one cliff
partner has a potency in the nanomolar range and if there is an
at least 100-fold difference in potency between two partners.'®
Depending on a specific application, these criteria might of
course be modified. However, for any activity cliff analysis, they
need to be clearly specified, which is often not the case.
Molecular Representation Caveat. The way in which
compound similarity relationships are assessed is also critical
for conclusions drawn from any activity cliff analysis. Figure 2
shows an example of an “undisputable” activity cliff, a pair of
analogues with a small chemical modification that triggers a
large potency change. In such a case, it is not required to
calculate similarity values to represent cliffs because the high
degree of similarity is immediately obvious. Such considerations
essentially apply to all compound pairs that are a part of a single
analogue series. However, for the analysis of large and hetero-
geneous data sets, similarity values must be calculated to
systematically compare compounds and similarity threshold
values for cliff formation must be defined. In another example
in Figure 2, fingerprint Tanimoto similarity has been calculated
to establish the compound similarity relationship. Here, the
activity cliff character might well be a matter of debate, at least
from a medicinal chemistry point of view, given the difference
in core structures between these compounds, despite overall
structural resemblance. This comparison illustrates a well-
known conundrum in chemical space and activity landscape
design: chosen molecular representations (descriptors) and, to
a lesser extent, similarity measures substantially influence the
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assessment of similarity relationships and, consequently, the
formation and distribution of activity cliffs.">'®'” For example,
activity cliffs that are present when using a particular molecular
representation might be absent when usin% another one
because pairwise similarity values change.'>'® SAR analysis
functions such as SARI or SALI are generally affected by the
molecular representation dependence of similarity value dis-
tributions because they are based on calculated fingerprint
Tanimoto similarities. In this context, an important point to
consider is whether calculated similarities are chemically intui-
tive or not, as illustrated in Figure 2. As long as molecules share
common frameworks and one can appreciate the similarity of
cliff partners by eye, activity cliff representations are usually
meaningful, regardless of how similarity values might be calcu-
lated. Some rules can be applied. For example, if we need to
calculate fingerprint similarities for activity cliff analysis, we
typically utilize a Tanimoto similarity value of 0.55 for the
extended connectivity fingerprint with bond diameter 4
(ECFP4)"® as a similarity threshold criterion'® or, alternatively,
a value of 0.85 for molecular access system (MACCS) struc-
tural keys.'"” For these standard fingerprints, the given
Tanimoto similarity values approximately correspond to each
other and typically identify visibly similar structures in pairwise
comparisons. Nevertheless, these compound might contain
different scaffolds that are chemically (synthetically) more or
less similar to each other. In general, the more complex mole-
cular representations are, the more weight is put on fine struc-
tural details and/or property differences and the more dissimilar
compounds will be on the basis of calculated similarity values.
Such representation or descriptor “artifacts” will rarely lead to
false-positive activity cliff assignments; this would require
classifying structurally distinct compounds as being similar,
which is not very likely. Rather, the probability is higher that
potential activity cliffs might be missed if descriptors are used to
represent molecules that strongly abstract from chemical
structure. However, if the chemical resolution of molecular
representations is too low, false-positive cliff assignments are
likely. A key issue in similarity evaluation is that any calculated
similarity that cannot clearly be reconciled and understood on
the basis of 2D molecular graphs is not suitable for large-scale
SAR analysis. Hence, a meaningful assessment of similarity is a
crucial aspect for activity cliff exploration.

B INFLUENCE OF DATA VARIABILITY

Other major factors that influence the identification and
description of activity cliffs include the type and intrinsic
variability of experimental measurements.”>*" In this context, it
is important to understand how the use of alternative potency
measurements such as ICsy and K; values might affect activity
cliff formation and distribution. Furthermore, if multiple
potency values are available for active compounds, the question
becomes which of these one should choose or how they should
be combined. For activity cliff analysis, this is another important
issue. To evaluate these factors, a systematic analysis of public
domain compounds from BindingDB** has recently been
carried out.”' For this and other data mining investigations
discussed below, compound pairs were considered to form
activity cliffs if at least one of the compounds had a potency in
the nanomolar range, if there was an at least 100-fold difference
in potency, and if an ECFP4 Tanimoto similarity threshold
value of at least 0.55 was reached. In our systematic analysis,
it was found that activity cliff distributions notably changed
when multiple available potency values were averaged and
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when minimum or maximum values were used. Over many
different compound data sets, the selection of maximum
potency values generally yielded the lowest number of activity
cliffs. Only approximately half of the activity cliffs detected for
alternative ways to represent multiple potency measurements
were conserved. Figure 3 shows an example. For high-confidence

minimum <
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Figure 3. Activity cliff variability. Nonconserved activity cliffs found in
a data set of dihydrofolate reductase inhibitors are shown in NSGs
generated on the basis of alternative potency values (minimum, mean,
or maximum). In order to focus the representation on activity cliff
formation, nodes are color-coded according to different potency
ranges: green, pICs, < S; yellow, pICs, > 5 and pICyy < 7; red, pICsy > 7
(each connected pair of red and green nodes represents an activity
cliff). Otherwise, the node representation is according to Figure 1.
Exemplary activity cliffs that are not conserved for alternative potency
measurements are encircled. The figure is adapted from ref 21.

data, i.e., when all available potency values agreed within an order
of magnitude, fewer activity cliffs were consistently detected than
for lower confidence (more variable) assay data. Moreover, the
use of ICy, or K; measurements significantly altered activity cliff
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Figure 4. Selectivity cliffs. Shown are exemplary selectivity cliffs for two inhibitors of cathepsin L and B (left) and COX-1 and COX-2 (right),
respectively. Structural differences between analogue pairs are shown in red, and potency values of the inhibitors are reported. NSG “windows” from
representations of larger data sets are displayed according to Figure 1, and nodes corresponding to the pairs of inhibitors are encircled. For each
compound pair, the NSG at the top captures the selectivity cliff while the other two NSG views illustrate the presence or absence of activity cliffs
formed by each pair of inhibitors against the individual targets. The two capthepsin inhibitors do not form activity cliffs against cathepsin L or B but a
notable selectivity cliff (within this data set of relatively weakly potent inhibitors). A different scenario is observed for the COX inhibitors. Diclofenac
is highly potent against both COX-1 and COX-2, whereas lumiracoxib is highly potent against COX-1 but nearly inactive against COX-2. Hence, this
compound pair forms a large-magnitude activity cliff against COX-2 but no activity cliff against COX-1. However, these two inhibitors form a
prominent selectivity cliff, due to their dramatic difference in potency against COX-2.

distributions. K; measurements, which represent equilibrium
constants (different from ICq, values), yielded consistently fewer
activity cliffs than ICg, measurements.”’ These findings clearly
indicate that assay variability and approximate potency measure-
ments generally lead to larger numbers of activity cliffs than
the use of high-confidence data and equilibrium constants. Thus,
limited accuracy of experimentally determined potency values
causes a tendency of false-positive activity cliff assignments.
Generally, most stable and reliable activity cliff distributions
are produced by compounds for which multiple K; values of
comparable magnitude are available.”' For such high-confidence
data, the choice of alternative measurements has only little
influence on cliff formation.

B EXTENSIONS OF THE ACTIVITY CLIFF CONCEPT

Following the discussion of intrinsic limitations of activity cliff
analysis, this section focuses on specific modifications of the
activity cliff concept. Recently, the activity cliff definition has
been further extended in different ways and several specialized
cliff representations have been introduced.

Consensus Activity Cliffs. Given the influence of mole-
cular representations on cliff formation (vide supra), attempts
have been made to identify activity cliffs in compound sets that
are consistently formed when alternative descriptors are used.'®
Accordingly, such cliffs, termed consensus activity cliffs,'® are
least affected by changes in molecular representations and
similarity assessment. Thus, they should present interesting test
cases for further analysis, both from a chemical reference space
and medicinal chemistry perspective. For example, it might be
interesting to study if invariant cliffs are preferentially found in
specific compound classes.

R-Cliffs. As an extension of conventional R-group tables,
series of analogues have been graphically organized with respect
to multiple replacements at each individual substitution site.**
This organization has also permitted the identification of activity
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cliffs formed at each site.®> These site-specific activity cliffs are
termed R-cliffs (in analogy to R-groups) and derived for single
analogue series.

Selectivity Cliffs. Activity cliffs are typically determined for
individual targets. However, it is straightforward to conceptu-
alize selectivity cliffs for pairs of targets.”* Following this idea, a
selectivity cliff is formed by a pair of compounds having
significantly different potencies against one or two targets of a
pair. Exemplary selectivity cliffs are depicted in Figure 4. Impor-
tantly, compounds forming a selectivity cliff may or may not
form activity cliffs against the individual targets, which results in
a possible gain in information when considering the formation
of selectivity cliffs,”* as also illustrated in Figure 4.

Multitarget Activity Cliffs. A further extension of the
activity cliff concept into bioactivity space is provided by
the introduction of multitarget activity cliffs.'>*> Going beyond
the assessment of target pair selectivity, these types of cliffs are
formed by compounds having different potency against series
of targets, for example, members of a given protein family. For
compounds with activity profiles against a specific number of
targets, a hierarchy of all theoretically possible multitarget acti-
vity cliffs (of predefined magnitude) can be formally derived.”®
As illustrated in Figure S, multitarget cliffs can be “directed” or
“undirected”. In the former case, one of the cliff partners has
consistently high potency against its targets while the other has
low potency; in the latter, the cliff partners have different high
or low potency against at least one of several targets. These
potency relationships determine the directionality of multi-
target activity cliffs.

Mechanism Cliffs. In activity landscape representations,
compound potency measurements have also been comple-
mented with molecular mechanism-of-action information. This
provides a basis for the exploration of structural changes that
lead to “mechanism hopping”.>® The analysis of such effects is
particularly relevant for receptor ligands (often of G protein

dx.doi.org/10.1021/jm201706b | J. Med. Chem. 2012, 55, 2932—2942



Journal of Medicinal Chemistry

Cathepsin K L S o o
N L J
H e
Dual .
target cliff directed pK; bin
A
o H Q/O\ 5
SRR
H S H 7_
4 |1 Activity
cliff
0. N, 5_
Aurora A B EGFR o N
NH v
S\I//C[O/
o
Triple undirected
target cliff U\/\/O N

Serine/threonine kinase family:
Aurora A and B
Tyrosine kinase family:
EGFR

Figure S. Multitarget activity cliffs. Exemplary directed and undirected dual- and triple-target activity cliffs are shown. For the schematic
representation of these activity cliffs, potency values were binned as indicated on the right. A directed dual-target cliff is formed by two inhibitors of
cathepsin K, L, and S (top). In addition, an undirected triple-target cliff is observed for two inhibitors of protein kinases belonging to different
families: Aurora serine/threonine kinases A and B and the epidermal growth factor receptor (EGFR) tyrosine kinase. Structural differences between
the compounds in each pair are indicated in red. The figure is adapted from ref 25.

coupled receptors) that might act by one of several alternative
mechanisms including agonists, partial agonists, inverse
agonists, or antagonists. Following this approach, mechanism
cliffs are formed by pairs of compounds in series of analogues
where small structural modifications induce a transition from
one molecular mechanism to another. Exemplary mechanism
cliffs are shown in Figure 6.

B LIGAND-BASED VS STRUCTURE-BASED VIEWS

In medicinal chemistry, SAR information is typically extracted
from ligand sets. However, SAR discontinuity is often (but not
always) determined by specific receptor—ligand interactions.
Hence, the formation of activity cliffs might be attributed
to the presence or absence of one or more critical receptor—
ligand contacts, for example, an important hydrogen bond,
ionic interaction, or a complementary fit of an aromatic
substituent into a hydrophobic pocket. The critical role of such
interactions is ultimately also encoded as SAR information in
sets of ligands. Given the direct link between ligand—target
interactions and SAR characteristics, it is logical and attractive
to also explore activity cliff formation at the target structure
level, for example, with the aid of ligand—target complex
structures. Thus far, only few attempts have been made to study
activity cliff formation at the target structure level. For example,
exploring prominent activity cliffs identified in compound data
sets using structures of complexes has revealed that these cliffs
can often, but clearly not always, be rationalized on the basis
of short-range ligand—protein interactions formed in X-ray
structures.”” Of course, interactions seen in complex structures
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only provide an incomplete account of a ligand binding or
inhibition process where entropic effects and/or desolvation
penalties often play an important role. Nevertheless, rationalizing
activity cliffs detected in ligand sets taking target structures into
account is not only intellectually stimulating but can provide
important information for structure-based drug design about
the relevance of individual interactions seen in ligand—target
complexes and reveal opportunities for further compound
modifications.

Going beyond the analysis of selected activity cliffs on the
basis of structural data, it has recently been attempted to
systematically deduce activity cliffs from (experimentally
observed or modeled) ligand—target interactions. Following
this elegant approach termed identification of structure-based
activity cliffs (ISAC),”® computed protein—ligand interaction
energies are utilized to derive an interaction fingerprint for
each available active compound by scoring its contacts with
individual target atoms. The interaction fingerprint then
replaces conventional structural fingerprints for the calcula-
tion of Tanimoto similarity to derive SALI scores. For
prominent activity cliffs formed by compounds with similar
interaction fingerprints but different potency, individual
interactions that distinguish the cliff partners from each
other are extracted from their fingerprint representations.
Target protein atoms involved in these discriminatory
interactions are then considered “hot spots” for the formation
of activity cliffs.”® The cardinal feature of the ISAC approach
that sets it apart from conventional activity cliff analysis is the
replacement of structural ligand similarity with a measure of
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Figure 6. Mechanism cliffs. On the left, a subgraph of a mechanism-based NSG representation of adenosine Al receptor ligands is shown where
node colors represent different molecular mechanisms of action (and node transparency reflects potency). Nodes representing pairs of ligands that
constitute mechanism hops are connected by dashed edges. Compounds and nodes are numbered correspondingly. Structural differences between
analogues are highlighted in red and displayed on a background colored according to mechanism. The four analogues have comparable potency but
constitute a series of mechanism cliffs. The figure is adapted from ref 26.

ligand—target interaction similarity in the context of the SALI
formalism.

B ACTIVITY CLIFF DISTRIBUTION

Key questions for activity cliff analysis and for judging the
relevance of the activity cliff concept for medicinal chemistry
include how frequently significant activity cliffs occur in
compound data sets and how they might be distributed over
different target families. To provide answers to these questions,
a systematic search for activity cliffs has been carried out in
BindingDB and ChEMBL* compound data sets."> It was
found that approximately 12% of all bioactive compounds were
involved in the formation of activity cliffs of at least 2 orders of
magnitude (corresponding to 2% of all possible pairs of struc-
turally similar compounds). However, only 4% of all activity
cliffs were multitarget cliffs and nearly all of these cliffs were
directed. Thus, it follows that activity cliff compounds with
different selectivity for multiple targets are very rare, a finding
with significant implications for the design of selective com-
pounds. For example, if a compound is found to have high
potency against a given target, it is likely that it will also be
highly potent against related targets.'> Thus, on the basis of
currently available data, it might be difficult to modify the com-
pound in such a way that it displays differential potency against
series of related targets. For such considerations, multitarget
activity cliff information is rather useful. It is of course well
appreciated in medicinal chemistry that generating active
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compounds that are highly selective for one target over closely
related ones is often (but not always) a very difficult task.

Furthermore, it was also found that cliffs were similarly
distributed over different target families, without revealing a
significant enrichment for individual families (as one might
have expected). Thus, on the basis of currently available data,
differences in the specifics of ligand—target interactions do not
significantly alter activity cliff propensities.

From this systematic activity cliff survey, it can be concluded
that more than 10% of all currently available active compounds
are involved in the formation of at least one or two single-target
activity cliffs of significant magnitude, with similar coverage
over different target families. Hence, for medicinal chemistry
applications, activity cliffs should indeed provide a substantial
source of SAR information.

This view is further substantiated by activity cliff analyses at
the level of molecular building blocks. For example, in a syste-
matic analysis of chemical substitutions inducing activity cliffs,
facilitated throu}gh the application of the matched molecular
pair formalism, 0 approximately 200 R-group replacements
have been identified that display a strong tendency to form
activity cliffs in different compound classes across different
target families.”’ Moreover, approximately 100 heteroatom-
containing molecular scaffolds®® of varying size and chemical
complexity have been identified to preferentially occur in
activity cliff forming compounds, also across different target
families.** Thus, medicinal chemistry analysis of activity cliffs
and compound design should not only focus on substitution
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Figure 7. Activity ridge. Shown is a set of prostanoid EP3 receptor antagonists that form an exemplary activity ridge. A cyclic skeleton (black) covers
three very similar molecular scaffolds (blue) each of which represents a varying number of highly (red) and weakly potent (green) analogues. Each
pair of red and green compounds forms an activity cliff according to the criteria given in the text.

patterns in given analogue series but also include the explo-
ration of alternative high-priority scaffolds. This might also
provide a basis for a more detailed analysis of SAR transfer
events than has been possible before. For example, cliff forming
substitutions might be evaluated at corresponding sites in
alternative scaffolds, thus providing opportunities for future
research.

B ACTIVITY RIDGES

An observation we have consistently made in compound data
analysis is that activity cliffs often do not occur in isolation, i.e.,
in the absence of close structural neighbors, but involve groups
of compounds forming multiple cliffs. Thus, the “classical” view
of activity cliffs and compound pairs should be extended to
include cliffs formed by multiple compounds. To assess this
conjecture, a hypothetical data structure termed “activity ridge”
was introduced.** This structure was proposed to consist of a
“nanomolar layer” of at least five compounds (all with potency
values within an order of magnitude) and another layer of at
least five compounds with lower or higher potency, with an at
least 100-fold potency difference between these two layers and
the additional requirement that each compound in one layer
must form pairwise activity cliffs with all compounds in the
other. Hence, the activity ridge structure was envisioned to
involve “combinatorial” activity cliff formation. When 242
compound data sets for this activity cliff-rich data structure
were searched, a total of 125 activity ridges were identified in
71 compound activity classes involving up to 70 active com-
pounds.>* An exemplary activity ridge is shown in Figure 7.
When activity ridge criteria are relaxed and fewer participating
compounds are required, many more groups of molecules
forming multiple activity cliffs are identified. Activity ridges are
rich in SAR information and hence particularly interesting from
a medicinal chemistry perspective.
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Furthermore, as also illustrated in Figure 7, for the definition
of activity ridges, hierarchical structural relationships between
compounds, heteroatom-containing scaffolds,>* and cyclic
skeletons® (that further abstract from bond orders and
heteroatom positions) were utilized as a structural similarity
criterion to replace calculated Tanimoto similarity. Accordingly,
scaffolds and the analogues they represent are considered
similar if they correspond to the same cyclic skeleton (i.e., if
they have the same topology). There are instances where the
heteroatom content of topologically equivalent scaffolds sub-
stantially differs, which then questions the chemical similarity of
theses scaffolds. However, for the majority of activity ridges that
were detected and analyzed, this structural organization scheme
identified analogue series around topologically equivalent scaf-
folds with comparable heteroatom arrangements. Hence, this
intuitive similarity criterion is regarded as a viable alternative to
calculated similarity values for activity cliff representation.

B INTERPRETATION

In medicinal chemistry, SAR analysis should ultimately suggest
new compounds to be made. Although activity cliffs reveal
structural modifications that are of critical importance for bio-
logical activity, their identification does not automatically enable
compound design, especially when cliffs are considered on a
case-by-case basis. Clearly, activity cliffs need to be analyzed in
light of general SAR trends and interpretable structural relation-
ships. For calculated similarity values, this might not always be
the case (vide supra). Accordingly, attempts have also been
made recently to completely replace calculated similarity values
in SAR networks with well-defined substructure relationships.*®
In order to maximize the information provided by activity cliff
analysis, searching for multiple cliffs in structurally related
series, as exemplified by activity ridges, is of high value. Insights
obtained from a comparison of multiple cliffs help to transform
activity cliff information into compound design suggestions.
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Furthermore, it is worth noting that almost all compound data
sets analyzed thus far contain activity cliffs of considerable
magnitude, often with high frequency. Thus, for hit-to-lead
or lead optimization projects focusing on popular targets, it
is meaningful to carefully mine existing compound data for
activity cliff information when new compound series are taken
into consideration. It might then often be possible to focus on
critical substitution patterns in different sets of compounds,
explore corresponding substitutions on related scaffolds, and
consider SAR transfer potential. Thus, while the identification
of activity cliffs alone does not ensure interpretability of SAR
information, the exploration of activity cliffs within the context
of alternative compound series provides a promising basis for
the identification of SAR determinants.

B PRACTICAL CONSIDERATIONS

Although it is difficult to propose generally applicable proce-
dures on how to best incorporate activity cliff analysis into
practical medicinal chemistry projects (given the specific
requirements of individual projects), following a few simple
guidelines should make it possible to consistently take activity
cliffs into consideration and avoid artificial bias in their analysis.
Most compound sets contain activity cliffs, and it is hence
useful to search for them in the context of any medicinal chem-
istry efforts on targets for which prior compound information is
available. Graphical access to activity cliffs in compound data
sets of any source is provided by freely available programs tools
such as SALI graphs'' or various tools implemented in the
SARANEA software environment.>” These graphical analysis
programs are fairly easy to use and should be readily accessible
to interested medicinal chemists, with some initial support by
computational experts. These tools also provide a direct access
to compound structures associated with cliffs, which further
supports interactive analysis. Importantly, for a scientifically
sound and practically relevant evaluation of cliffs, at least two
further aspects should be considered. Whenever possible, equi-
librium constants should be used as potency measurements
to define activity cliffs, which helps to eliminate questionable
cases. In addition, molecular similarity should be considered
in a conservative manner. Hence, one should best limit cliff
analysis to cases where chemical similarity is intuitive from a
medicinal chemistry point of view. By contrast, one should
certainly not rely on calculated similarity values to define cliffs
in cases where similarity might be a matter of debate. Finally,
activity cliffs should preferably not be considered as isolated
occurrences. Rather, the structural neighborhood of cliffs should
always be carefully inspected (which is easily done with the aid of
graphical analysis tools). The environment of prominent activity
cliffs might often reveal the formation of additional cliffs of
varying magnitude or other interesting SAR information. For
example, SAR continuity can frequently be observed in the
neighborhood of activity cliffs, even within the same compound
series.”® Thus, for any practical purposes, activity cliff environ-
ments in compound data sets are a prime source of multi-
layered SAR information.

B CONCLUDING DISCUSSION

Activity cliffs are a much discussed topic in chemoinformatics
and medicinal chemistry, but are often not well-defined.
Regardless of whether activity cliffs are considered as a con-
tinuum or as discrete states, any analysis must clearly define
criteria for cliff formation. Furthermore, the study of activity
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cliffs is intrinsically biased by the use of alternative molecular
representations and similarity measures (potentially leading to
false-negatives) and by activity data integrity and variability
(giving rise to false-positives). Hence, care must be taken to
select appropriate molecular representations and pay attention
to data quality. It also follows that chemical space design and
the variance of chemical space representations will continue to
influence activity cliff assessment. In this context, we promote the
view that activity cliff analysis should best be limited to cases
where structural relationships are obvious and that highly com-
plex descriptor space representations should be avoided when
attempting to study cliff formation in a systematic manner.

In general, activity cliffs are the most prominent features of
activity landscapes and as such equally interesting for individual
analysis or mining of large compound sets. Activity cliffs are
currently mostly analyzed on the basis of ligand data but can
also be studied in a complementary fashion using ligand—target
complex structures. In the latter case, there is much less infor-
mation available. However, exploring specifics of ligand—target
interactions and binding modes that might favor or work
against the introduction of cliffs is not only scientifically stimu-
lating but also of immediate relevance for drug design.

Numerical local SAR analysis functions make it possible to
identify the most prominent activity cliffs in any data set.
However, whether those cliffs are significant and provide useful
SAR information requires additional analysis. Moreover, by
use of data mining methods, well-defined (discrete) activity
cliffs can be systematically extracted from compound data
sets. Although the large-scale exploration of activity cliffs (and
of compound data structures containing multiple cliffs such as
activity ridges) is still in its infancy, some conclusions can be
drawn on the basis of currently available data. The picture
emerges that large-magnitude activity cliffs frequently appear in
sets of active compounds and are comparably distributed over
different target classes. Furthermore, activity cliffs are often not
formed in isolation but as parts of larger information-rich data
structures. Hence, a significant body of activity cliff informa-
tion is already available from which SAR information can be
deduced. For medicinal chemistry applications, the interpreta-
tion of this information is a key aspect. Despite of their current
popularity, the notion of activity cliffs alone does not lead to
the generation of better compounds. Whether or not activity
cliff information can be productively utilized will much depend
on the SAR context, the observed compound potency distribu-
tion, and the interpretability of structural relationships.

The activity cliff concept has recently been extended in
different ways, for example, by introducing consensus activity
cliffs and selectivity or multitarget cliffs. It is anticipated that
additional extensions will be considered for specific applications.
Because the assessment of activity cliffs is a prime objective of
activity landscape analysis, it is also expected that representations
of activity cliffs will be further modified and refined as additional
activity landscape models are introduced. These might include,
among others, landscapes covering high-dimensional target
space designed for the study of polypharmacology® or for
chemogenomics*® applications. In medicinal chemistry, it is
expected that the activity cliff concept will continue to experi-
ence considerable interest not only in lead optimization but
also in the context of large-scale data mining efforts. Despite
the increasing notion of polypharmacological drug behavior and
the utility of this concept in certain therapeutic areas (such as
oncology), compound selectivity will continue to be a hallmark
of medicinal chemistry efforts in many areas of drug discovery

dx.doi.org/10.1021/jm201706b | J. Med. Chem. 2012, 55, 2932—2942



Journal of Medicinal Chemistry

(such as infectious or chronic diseases). Therefore, striking a
balance between compound selectivity and promiscuity might
often be of critical importance for future progress. From this
point of view, applying the activity cliff concept and its exten-
sions is expected to play a vital role in efforts focusing on
compound selectivity against single targets as well as binding
patterns in target families (for example, by exploring the forma-
tion of multitarget cliffs). Especially in the context of polyphar-
macology, a noteworthy feature of activity cliffs is that their
presence provides a clear indication of specific interactions
(causing SAR discontinuity). Hence, searching for activity cliffs
should be very helpful to distinguish between “true” polypharma-
cological behavior and nonspecific binding events. In conclusion,
it is hoped that an increasing number of case studies will become
available in the near future that illustrate how the growing
amount of activity cliff information (and the underlying scientific
analysis concepts) might be transformed into practical
compound design strategies.
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